

# 1<sup>st</sup> Class Mathematic

الرياضيات

أستاذ المادة :- الأستاذ المساعد ناجي مطر سحيب

# **Chapter One**

Consider an arbitrary system of equation in unknown as:

$$AX = B \qquad (1)$$

$$a_{r1}X_{1} + a_{12}X_{2} + a_{B}X_{3} + \dots + a_{1n}X_{n}$$

$$ail\chi_{1} + ai_{2}\chi_{2} + ai_{3}\chi_{3} + \dots + ain\chi n = b_{1}$$

$$a21\chi_{1} + a22\chi_{2} + a23\chi_{3} + \dots + a2n\chi n = b2$$

$$a_{21}X_{1} + a_{22}X_{2} + a_{23}X_{3} + \dots + a_{2n}X_{n}$$

$$am1\chi_{1} + am2\chi_{2} + am3\chi_{3} + \dots + am\chi_{n} = bm$$

$$a_{m1}\chi_{1} + a_{m2}\chi_{2} + a_{m3}\chi_{3} + \dots + am\chi_{n}$$

$$(2)$$

The coefficient of the variables and constant terms can be put in the form:

$$\begin{pmatrix} a_{11} & a_{12} & a_{1n} \\ a2 & a22 & a2n \\ a_{m1} & a_{m2} & a_{mn} \end{pmatrix}_{mxn} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi n \end{pmatrix}_{nx1} \begin{pmatrix} b1 \\ b2 \\ bm \end{pmatrix}_{mx1} ....(3)$$

Let the form

$$\begin{pmatrix} a_{u}a_{12}a_{1n} \\ a_{21}a_{22}a_{2n} \\ am_{1}am_{2}amn \end{pmatrix} = A = (a_{i1}) ... (4)$$

Is called (mxn) matrix and donated this matrix by:

[aij] 
$$i = 1, 2, \dots, m$$
 and  $j = 1, 2, \dots, n$ .

We say that is an (mxn) matrix or تكملة

The matrix of order (mxn) it has m rows and n columns.

For example the first row is  $(a_{11}, a_{12}, a_{1n})$ 

And the first column is  $\begin{pmatrix} a_{12} \\ a_{11} \\ a_{21} \\ a_{m1} \end{pmatrix}$ 

(aij) denote the element of matrix. Lying in the i – th row and j – th column, and we call this element as the (i,j) - th element of this matrix

Also 
$$\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_n \end{pmatrix}_{nx_1}$$
 is (nx1) [n rows and columns]  $\begin{pmatrix} b_1 \\ b_2 \\ b_m \end{pmatrix}_{mx}$  Is (mx1) [m rows and 1 column]

#### Sub - Matrix:

Let A be matrix in (4) then the sub-matrix of A is another matrix of A denoted by deleting rows and (or) column of A.

Let 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Find the sub-matrix of A with order (2×3) any sub-matrix of A denoted by deleting any row of A  $\binom{123}{456}$ ,  $\binom{123}{789}$ ,  $\binom{456}{789}$ 

#### Definition 1.1:

Tow (mxn) matrices A = [aij] (mxn) and B = [bij] (mxn) are said to be equal if and only if:

$$aij = bij$$
 for  $i = 1,2....m$  and  $j = 1,2....n$ 

Thus two matrices are equal if and only if:

- i. They have the same dimension, and
- ii. All their corresponding elements are equal for example:

$$\begin{bmatrix} 2 & 0 - 1 \\ 3 & 5 & 2 \end{bmatrix} = \begin{bmatrix} \frac{4}{2} & 0(7) & -2 + 1 \\ 3 & \frac{20}{4} & 2 \end{bmatrix}$$

### Definition 1.2

If A = [aij] mxn and B = [bij] mxn are mxn matrix their sum is the mxn matrix A+B = [aij + bij]mxn.

In other words if two matrices have the same dimension, they may be added by addition corresponding elements. For example if:

$$\mathbf{A} = \begin{pmatrix} 2 & -7 \\ -3 & 4 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} -5 & 0 \\ 1 & 6 \end{pmatrix}$$

Then

$$A+B = \begin{pmatrix} 3+-5 & -7+0 \\ -3+1 & 4+6 \end{pmatrix} = \begin{pmatrix} -3 & -7 \\ -2 & 10 \end{pmatrix}$$

Additions of matrices, like equality of matrices is defined only of matrices have same dimension.

#### Theorem 1.1:

Addition of matrices is commutative and associative, that is if A, B and C are matrices having the same dimension then:

$$A + B = B + A$$
 (commutative)

$$A + (b + C) = (A + B) + C$$
 (associative)

### Definition 1.3

The product of a scalar K and an mxn matrix A = [aij] mxn is the nn,Xn matrix KA = [kaij] mXn for example:

$$6 \begin{pmatrix} -1 & 0 & 7 \\ 5 & 2 & -11 \end{pmatrix} = \begin{pmatrix} 6(-1) & 6(0) & 6(7) \\ 6(5) & 6(2) & 6(-11) \end{pmatrix} = \begin{pmatrix} -6 & 0 & 2 \\ 30 & 12 & -6 \end{pmatrix}$$

# **Application of Matrices**

## Definition 1.4:

If A = [aij] mxn is mxn matrix and B = [bjk] nxp an nxp matrix, the product AB is the mxp matrix C = [cik] nxp in which

$$Cik = \sum_{j=1}^{n} aij bik$$

Example 1: if A = 
$$\begin{pmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \end{pmatrix}_{2x3}$$
 and B =  $\begin{pmatrix} b11 \\ b21 \\ b22 \end{pmatrix}_{3x1}$ 

A B = 
$$\begin{pmatrix} a11 \ b11 + a12 \ b21 + a13 \ b31 \\ a21 \ b11 + a22 \ b21 + a23 \ b31 \end{pmatrix}_{2\times 1}$$

Example 2: Let 
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 4 \\ 5 & -2 \end{pmatrix}_{3\times 2}$$
 and  $B = \begin{pmatrix} 3 & 1 & 4 & -5 \\ -2 & 0 & 3 & 4 \end{pmatrix}$ 

$$AB = \begin{pmatrix} 0 & 2 & 17 & 2 \\ -11 & -1 & 8 & 21 \\ 19 & 5 & 14 & -33 \end{pmatrix}_{3\times 4}$$

### **Note 1.1:**

1 – in general if A and B are two matrices. Then A B may not be equal of

BA. For example 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and  $BA = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$   

$$\therefore AB \neq BA$$

2 - if A B is defined then its not necessary that B A must also be defined. For example. If A is of order (2×3) and B of order (3×1) then clearly A B is define, but B A is not defined.

## 1.3 Different Types of matrices:

- 1 Row Matrix: A matrix which has exactly one row is called row matrix. For example (1, 2, 3, 4) is row matrix
- 2 Column Matrix: A matrix which has exactly one column is called a column matrix for example  $\begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix}$  is a column matrix.
- 3 Square Matrix: A matrix in which the number of row is equal to the number of columns is called a square matrix for example  $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$  is a 2×2 square matrix.

A matrix (A)  $(n \times n)$  A is said to be order or to be an n-square matrix.

- 4 Null or Zero Matrix: A matrix each of whose elements is zero is called null matrix or zero matrix, for example  $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  is a (2×3) null matrix.
- 5 Diagonal Matrix: the elements aii are called diagonal of a square matrix  $(a_{11}\ a_{22}-a_{nn})$  constitute its main diagonal A square matrix whose every element other than diagonal elements is zero is called a diagonal matrix for

Example: 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 or 
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

6 – Scalar Matrix: A diagonal matrix, whose diagonal elements are equal, is called a scalar matrix.

For example 
$$\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$
,  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,  $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  are scalar matrix

7 – Identity Matrix: A diagonal matrix whose diagonal elements are all equal to 1 (unity) is called identity matrix or (unit matrix). And denoted by in for

Example 
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

**Note1.2:** if A is (mxn) matrix, it is easily to define that AIn = A and also ImA = A

**Ex:** Find AI and IA when 
$$A = \begin{pmatrix} 3 & 7 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

Solution: IA 
$$\longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{2\times 2} \begin{pmatrix} 3 & 7 & 2 \\ 1 & -4 & 3 \end{pmatrix}_{2\times 3} = \begin{pmatrix} 3 & 7 & 2 \\ 1 & -4 & 3 \end{pmatrix}_{2\times 3}$$

And AI = 
$$\begin{pmatrix} 3 & 7 & 2 \\ 1 & -4 & 3 \end{pmatrix}_{2\times 3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{3\times 3} = \begin{pmatrix} 3 & 7 & 2 \\ 1 & -4 & 3 \end{pmatrix}_{2\times 3}$$

8 – Triangular Matrix: A square matrix (aij) whose element aij = 0 whenever  $j \langle i |$  is Called a lower triangular matrix.simillary y a square matrix (aij) whose element aij = 0 whenever is called an upper Tringular Matrix

For example: 
$$\begin{pmatrix} 1 & 0 & 0 \\ 4 & 5 & 0 \\ 7 & 8 & 9 \end{pmatrix}$$
,  $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$  are lower triangular matrix

And

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
,  $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ , are upper triangular

Definition 1.4:

## Transpose of matrix

The transpose of an mxn matrix A is the nxm matrix denoted by  $A^T$ , formed by interchanging the rows and columns of A the ith rows of A is the ith columns in  $A^T$ .

For Example: 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix}_{2\times 3} A^{T} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & -1 \end{pmatrix}_{3\times 2}$$

9 – Symmetric Matrix: A square matrix A such that  $A = A^T$  is called symmetric matrix i.e. A is a symmetric matrix if and only if  $aij = a_{ji}$  for all element.

$$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix}$$

10 -Skew symmetric Matrix: A square matrix A such that  $A = A^T$  is called that A is skew symmetric matrix. i.e A is skew matrix  $\leftarrow \rightarrow a_{ji} = -aij$  for all element of A.

The following are examples of symmetric and skew – symmetric matrices respectively

$$(a) \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix}, (b) \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{pmatrix}$$

- (a) symmetric
- (b) Skew symmetric.

Note the fact that the main diagonal element of a skew – symmetric matrix must all be Zero

- 11 Determinates: To every square matrix that is assigned a specific number called the determinates of the matrix.
- (a) Determinates of order one: write det (A) or |A| for detrimental of the matrix A. it is a number assigned to square matrix only.

The determinant of  $(1 \times 1)$  matrix (a) is the number a itself det (a) = a.

(c) Determinants of order two: the determinant of the 2×2. matrix  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 

Is denoted and defined as follows:  $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ 

Theorem 1.2: determinant of a product of matrices is the product of the determinant of the matrices is the product of the determinant of the matrices  $\det(A B) = \det(A)$ .  $\det(B) \det(A + B) \# \det A + \det B$ 

9

- (C) Determinates of order three:
- (i) the determinant of matrix is defined as follows:

$$\begin{vmatrix} + & - & + \\ a111 & a22 & a23 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{vmatrix} = a11 \begin{vmatrix} a22 & a23 \\ a32 & a33 \end{vmatrix} - a12 \begin{vmatrix} a21 & a23 \\ a31 & a33 \end{vmatrix} + a13 \begin{vmatrix} a21 & a22 \\ a31 & a32 \end{vmatrix}$$

(ii) Consider the (3×3) matrix 
$$\begin{vmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{vmatrix}$$

$$= a11 \ a22 \ a33 + a21 \ a22 \ a31 + a13 \ a21 \ a32$$

Show that the diagram papering below where the first two columns are rewritten to the right of the matrix.

Theorem 1.3:

A matrix is invertible if and only if its determinant is <u>not Zero</u> usually a matrix is said to be singular if determinant is zero and non singular it otherwise.

# 1.5 prosperities of Determinants

- (1) det  $A = \det A^{T}$  where  $A^{T}$  is the transpose of A.
- (2) if any two rows (or two columns) of a determinates are interchanged the value of determinants is multiplied by -1.
- (3) if all elements in row (or column) of a square matrix are zero.

Then 
$$det(A) = 0$$

- (4) if two parallel column (rows) of square matrix A are equal then det (A) = 0
- (5) if all the elements of one row (or one column) of a determinant are multiplied by the same factor K. the value of the new determinant is K times the given det.

Example;

$$\begin{pmatrix} 4 & 6 & 1 \\ 3 & -9 & 2 \\ -1 & 12 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 2.3 & 1 \\ 3 & -3.3 & 2 \\ -1 & 4.3 & 3 \end{pmatrix}$$
$$= 3 \begin{pmatrix} 4 & 2 & 1 \\ 3 & -3 & 2 \\ -1 & 4 & 3 \end{pmatrix}$$

Example: 
$$\begin{pmatrix} 1 & 0 & 4 \\ -2 & 5 & -8 \\ 3 & 6 & 12 \end{pmatrix} = 4 \begin{pmatrix} 1 & 0 & 1 \\ -2 & 5 & -2 \\ 3 & 6 & 3 \end{pmatrix} = 0$$

(6) if to each element of a selected row (or column) of a square matrix = k times. The corresponding element of another selected row (or column) is added.

Example: 
$$\begin{vmatrix} 2 & 0 & 2 \\ 1 & -1 & +1 \\ 3 & 0 & 2 \end{vmatrix} = -1 \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} = 2$$

$$2 \times \text{ row } (1) + \text{ row } (3) \begin{vmatrix} 2 & 0 & 2 \\ 1 & -1 & 1 \\ 7 & 0 & 6 \end{vmatrix} = -1 \begin{vmatrix} 2 & 2 \\ 7 & 6 \end{vmatrix} = 2$$

(7) if any row or column contain zero elements and only one element not zero then the determinant will reduced by elementary the row and column if the specified element indeterminate.

**1.6 Rank of Matrix:** we defined the rank of any matrix a that the order of the largest square sub-matrix of a whose determinant not zero (det of sub-matrix ‡ 0)

Example: Let 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 find the rank of  $A$ 

$$1\times 9\times 5 + 2\times 6\times 7 + 3\times 4\times 8 - 3\times 5\times 7 - 1\times 6\times 8 - 2\times 4\times 9 = 0$$

Since |A| of order 3 Rank ‡ 3

Since 
$$\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \neq 0$$
 the rank ‡ 2

1.7 Minor of matrix: Let 
$$A = \begin{pmatrix} a11 & a12 & a1n \\ a21 & a22 & a2n \\ & & & \\ an1 & an2 & ann \end{pmatrix}$$
 (4)

Is the square matrix of order n then the determinant of any square submatrix of a with order (n-1) obtained by deleting row and column is called the minor of A and denoted by Mij.

1.8 Cofactor of matrix: Let A be square matrix in (4) with mij which is the minors of its. Then the Cofactor of a defined by  $Cij = (-1)^{i+j}$  Mij

Example: Let  $A = \begin{pmatrix} -2 & 4 & 1 \\ 4 & 5 & 7 \\ -6 & 1 & 0 \end{pmatrix}$  find the minor and the cofactor of element 7.

Solution: The minor of element 7 is

$$M23 = det \begin{pmatrix} -2 & 4 \\ -6 & 1 \end{pmatrix} = \begin{vmatrix} -2 & 4 \\ -6 & 1 \end{vmatrix} = 22$$

i.e (denoted by take the square sub-matrix by deleting the second rows and third column in A).

the Cofactor of 7 is

$$C23 = (-1)^{2+3}M_{23} = (-1)^{2+3}\begin{vmatrix} -2 & 4 \\ -6 & 1 \end{vmatrix} = -22$$

1.9 Adjoint of matrix: Let matrix A in (4) then the transposed of matrix of cofactor of this matrix is called adjoint of A, adjoint A = transposed matrix of Cofactor.

The inverse of matrix: Let A be square matrix. Then inverse of matrix {Where A is non-singular matrix} denoted by  $A^{-1}$  and  $A^{-1} = \frac{1}{\det A} adj(A)$ 

- 1.0 method to find the inverse of A: To find the inverse of matrix we must find the following:
  - (i) the matrix of minor of elements of A.
  - (ii) the Cofactor of minor of elements of A
  - (iii) the adjoint of A.

then 
$$A^{-1} = \frac{1}{|A|} adjA$$

Example: let 
$$A = \begin{pmatrix} 2 & 3 & -4 \\ 1 & 2 & 3 \\ 3 & -1 & -1 \end{pmatrix}$$
 Find  $A^{-1}$ 

(1) Minors of A is Mij = 
$$\begin{pmatrix} 1 & -10 & -7 \\ -7 & 10 & -11 \\ 17 & 10 & 1 \end{pmatrix}$$

(2) Cofactor of A is (-1) Mij = 
$$\begin{pmatrix} 1 & 10 & -7 \\ 7 & 10 & 11 \\ 17 & -10 & 1 \end{pmatrix}$$

(3) Adj of A = 
$$\begin{pmatrix} 1 & 7 & 17 \\ 10 & 10 & -10 \\ -7 & 11 & 1 \end{pmatrix}$$
.

**(4)** 
$$det = 60$$

$$\mathbf{A}^{-1} = \frac{1}{60} \begin{pmatrix} 1 & 7 & 17 \\ 10 & 10 & -10 \\ -7 & 11 & 1 \end{pmatrix}.$$

1.11 Properties of Matrix Multiplication:

$$1 - (KA) B = K (AB) = A (KB)$$
 K is any number

$$2 - A (BC) = (AB) C$$

$$3 - (A + B) C = AC + BC$$

$$4 - C (A + B) = CA + CB$$

For example: Let 
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ 

$$\mathbf{A} \; \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\mathbf{B} \ \mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$AB = \ddagger BA$$

$$6 - A B = 0$$
 but not necessarily  $A = 0$  or  $B = 0$ 

For Example: 
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, B = \begin{pmatrix} -1 & +1 \\ +1 & -1 \end{pmatrix}$$

$$\mathbf{A} \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$A \neq 0, B \neq 0$$

But

$$A B = 0$$

$$7 - \begin{pmatrix} C & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & C \end{pmatrix} = C \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

8 - AI = IA = A where I is identity matrix

$$9 - (A B)^{T} = B^{T} A^{T}$$
  
 $10 - A^{-1} A = A A^{-1} = I$ 

### 1.12 Cramer's Rule

Let the system of linear question as

$$\begin{array}{ccc} a_{11} & \chi_1 + a_{12} & \chi_2 = b1 \\ a_{21} & \chi_1 + a_{22} & \chi_2 = b2 \end{array} \} \rightarrow (i)$$

The system (i) can put in the form:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{11} & a_{22} \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \rightarrow (ii)$$

If D = 
$$\begin{vmatrix} a11 & a12 \\ a21 & a22 \end{vmatrix} \neq 0$$

Then the system (ii) has a unique solution, and Cramer's rule state that it may be found from the formulas:

$$\chi_1 = \frac{\begin{vmatrix} b1 & a12 \\ b2 & a22 \end{vmatrix}}{D}, X_2 = \frac{\begin{vmatrix} a11 & b1 \\ a21 & b2 \end{vmatrix}}{D}$$

Example: solve the system

$$3X_1 - \chi_2 = 9$$

$$X_1 + 2X_2 = -4$$

So, the system can put in the form

$$\begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}, \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, = \begin{pmatrix} 9 \\ -4 \end{pmatrix}$$

$$\mathbf{D} = \begin{vmatrix} 3 & -1 \\ 1 & 2 \end{vmatrix} = 7, \ \chi_1 = \frac{\begin{vmatrix} 9 & -1 \\ -4 & 2 \end{vmatrix}}{D} = \frac{14}{7} = 2$$

$$\chi_2 = \frac{\begin{vmatrix} 3 & 9 \\ 1 & -4 \end{vmatrix}}{D} = \frac{21}{7} = 3$$

Let the following system in the unknowns:

$$a11 \chi_1 + a11 \chi_2 + a113 X_3 = b1$$

$$a21 \chi_1 + a22 \chi_2 + a23 X_3 = b2$$

$$a31 \chi_1 + a32 X_2 + a33 \chi_3 = b3$$

The system (I) can be put in the form:

$$\begin{pmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} b1 \\ b2 \\ b3 \end{pmatrix}$$
 (II)

If D = 
$$\begin{vmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{vmatrix} \neq 0$$

The system has a unique solution, given by Cramer's rule:

$$\chi_1 = \frac{1}{D} \begin{vmatrix} b1 & a12 & a13 \\ b2 & a22 & a23 \\ b3 & a32 & a33 \end{vmatrix}, \ X_2 = \frac{1}{D} \begin{vmatrix} a11 & b1 & a13 \\ a21 & b2 & a23 \\ a31 & b3 & a33 \end{vmatrix} \ X_3 = \frac{1}{D} \begin{vmatrix} a11 & a12 & b1 \\ a21 & a22 & b2 \\ a31 & a32 & b3 \end{vmatrix}$$

Example: solve the system

$$X_1 + 3X_2 - 2X_3 = 11$$

$$4X_1 - 2X_2 + X_3 = -15$$

$$3X_1 + 4X_2 - X_3 = 3$$

By cramer's rule.

The system (1) become 
$$\begin{pmatrix} 1 & 3 & -2 \\ 4 & -2 & 1 \\ 3 & 4 & -1 \end{pmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{pmatrix} 11 \\ -15 \\ 3 \end{pmatrix}$$

Since D = det = 
$$\begin{vmatrix} 1 & 3 & -2 \\ 4 & -2 & 1 \\ 3 & 4 & -1 \end{vmatrix} = -25$$

Cramer's rule gives the solution:

$$\chi_1 = \frac{\begin{vmatrix} 11 & 3 & -2 \\ -15 & -2 & 1 \\ 3 & 4 & -1 \end{vmatrix}}{-25} = \frac{50}{-25} = -2$$

$$\chi_2 = \frac{\begin{vmatrix} 1 & 11 & -2 \\ 4 & -15 & 1 \\ 3 & 3 & -1 \end{vmatrix}}{-25} = \frac{-25}{-25} = 1$$

$$\chi_3 = \frac{\begin{vmatrix} 1 & 3 & 11 \\ 4 & -2 & -15 \end{vmatrix}}{-25} = \frac{125}{-25} = -5$$

# **Chapter Two**

# **Function Numbers:**

$$1 - N = set of natural numbers$$
  
 $N = \{1, 2, 3, 4.....\}$   
 $2 - I = set of integers$   
 $= \{....., -3, -2, -1, 0, 1, 2, 3...\}$   
Note that: NCI

$$3 - A = set of rational numbers$$

$$= \left( \chi : \chi = \frac{\rho}{q} \ \rho \ and \ q \ are \ int \ egers \ q \neq 03 \right]$$
  
Ex:  $\frac{3}{2}, -\frac{4}{5}, \frac{3}{1}, \frac{-7}{1}$ 

Note that: ICA

$$4 - B = \text{ set of irrational numbers}$$
  
=  $\{X : X \text{ is not arational number}\}$   
Ex:  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $-\sqrt{7}$ 

5 - R: set of real numbers = set of all rational and irrational numbers

Note that

R = AUB

Note: the set of real numbers is represented by a line called a line of numbers:



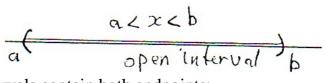
(ii) NCR, ICR, ACR, BCR Intervals

The set of values that a variable  $\chi$  may take on is called the domain of  $\chi$ . The domains of the variables in many applications of calculus are intervals like those shows below.

# • open intervals

is the set of all real numbers that lie strictly between two fixed numbers a and b:

In symbolsIn words $a \langle \chi \langle b \, or \, (q,b) \rangle$ The open interval a b



• Closed Intervals contain both endpoints:

In symbols

In words

 $a \le \chi \le b$  or [a,b]

the closed interval a b

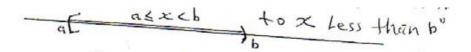


• Half – open intervals contain one but not both end points:

In symbols:

in wards

or [a,b] 'the interval a less than or equal  $a \le \chi \langle b$  $a \le \chi c b$  To  $\chi$  less than b



 $a \langle \chi \leq b$  or [a,b] the interval a less than  $\chi$  less than or equal b



 $1 - Y = \sqrt{1 - X^2}$ 

The domain of 
$$\chi$$
 is the closed interval

 $1-\leq \chi \leq 1$ 

$$2 - \mathbf{Y} = \frac{1}{\sqrt{1 - X^2}}$$

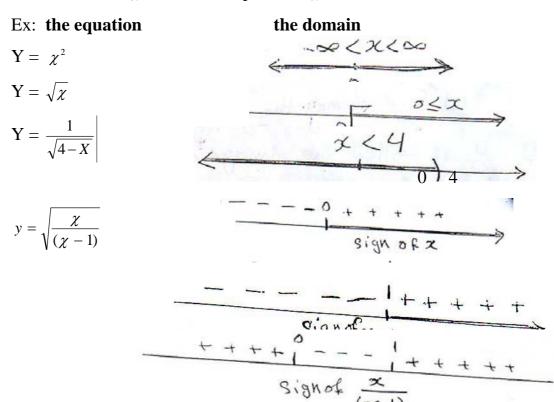
The domain for  $\chi$  is open interval

 $-1\langle \chi \langle 1 | \text{ because } \frac{1}{0} \text{ is not defined}$ 

$$\mathbf{B} - \mathbf{y} = \sqrt{\frac{1}{X} - 1}$$

$$\frac{1}{X}$$
  $-1 \ge 0$  or  $\frac{1}{X} \ge 1$ 

The domain for  $\chi$  is the half – open  $0 \langle \chi \leq 1 \rangle$ 



The domain for  $\chi$  is  $X \le 0UX$ 

Definition: A function, say f is a relation between the elements of two sets say A and B such that for every  $\chi \in A$  there exists one and only one  $Y \in B$  with Y = F(X).

The set A which contain the values of  $\chi$  is called the domain of function F.

The set B which contains the values of Y corresponding to the values of  $\chi$  is called the range of the function F.  $\chi$  is called the independer variable of the function F, while Y is called the dependant variable of F.

### Note:

- 1 Some times the domain is denoted by DF and the range by RF.
- 2 Y is called the image of  $\chi$ .

Example: Let the domain of  $\chi$  be the set  $\{0,1,2,3,4\}$ . Assign to each value of  $\chi$  the number  $Y = \chi^2$ . The function so defined is the set of pairs,  $\{(0,0), (1,1), (2,4), (3,9), (4,16)\}$ .

Example: Let the domain of  $\chi$  be the closed interval

 $-2 \le \chi \le 2$ . Assign to each value of  $\chi$  the number  $y = \chi^2$ .

The set of order pairs  $(\chi, y)$  such that  $-2 \le \chi \le 2$ 

And  $y = \chi^2$  is a function.

Note: Now can describe function by two things:

1 – the domain of the first variable  $\chi$ .

2 – the rule or condition that the pairs  $(\chi, y)$  must satisfy to belong to the function.

## **Example:**

The function that pairs with each value of  $\chi$  diffrent from 2 the number

$$\frac{\chi}{\chi-2}$$

$$y = f(\chi) = \frac{\chi}{\chi - 2}$$
  $\chi \neq 2$ 

Note 2: Let  $f(\chi)$  and  $g(\chi)$  be two function.

$$1 - (f \pm g)(\chi) = f(\chi) \pm g(\chi)$$

$$2 - (f.g)(\chi) = f(\chi) \cdot g(\chi)$$

3 - 
$$(\frac{f}{g})(\chi) = \frac{f(\chi)}{g(\chi)}$$
 if  $g(\chi) \neq 0$ 

Example: Let  $f(\chi) = \chi + 2, g(\chi) = \sqrt{\chi - 3}$  evaluate

$$f \pm g$$
,  $f.g$  and  $\frac{f}{g}$ 

So: 
$$(f \pm g)(\chi) = f(\chi) \pm g(\chi) = \chi + 2 \pm (\sqrt{\chi - 3})$$

$$(f.g)(\chi) = f(\chi) \cdot g(\chi) = (\chi + 2)(\sqrt{\chi - 3})$$

$$\left(\frac{f}{g}\right)(\chi) = \frac{f(\chi)}{g(\chi)} = \frac{\chi + 2}{\sqrt{\chi - 3}} \quad \{X : X \geqslant 3\}$$

## **Composition of Function:**

Let  $f(\chi)$  and  $g(\chi)$  be two functions

We define:  $(fog)(\chi) = f(g(\chi))$ 

Example: Let  $f(\chi) = \chi^2$ ,  $g(\chi) = \chi - 7$  evaluate fog and gof

So: 
$$(f \circ g)(\chi) = f[g(x)] = f(\chi - 7) = (\chi - 7)^2$$

$$(gof)(\chi) = g[f(\chi)] = g(\chi^2) = \chi^2 - 7$$

$$\therefore fog \neq gof$$

#### **Inverse Function**

Given a function F with domain A and the range B.

The inverse function of f written f, is a function with domain B and range A such that for every  $y \in B$  there exists only  $\chi \in A$  with  $\chi = f^{-1}(y)$ .

Note that:  $f^{-1} \neq \frac{1}{f}$ 

**Polynomials**: A polynomial of degree n with independent variable, written  $\mathbf{f_n}(\mathbf{x})$  or simply  $f(\chi)$  is an expression of the form:

$$fn(\chi) = q_o + a_1 \chi + a_2 X^2 + \dots + an X^n \dots (*)$$

Where  $q_0, a_1, \dots, a_n$  are constant (numbers).

The degree of polynomial in equation (\*) is n (the highest power of equation)

Example:

(i)  $f(\chi) = 5X$  polynomial of degree one.

- (ii)  $f(\chi) = 3X^5 2X + 7$  polynomial of degree five.
- (iii)  $F(\chi) = 8$  polynomial of degree Zero.

**Notes:** 

The value of  $\chi$  which make the polynomial  $f(\chi) = 0$  are called the roots of the equation  $(f(\chi) = 0)$ 

Example:  $(\chi) = 2$  is the root of the polynomial

$$F(\chi) = \chi^2 - \chi - 2$$

Since f(2) = 0

Example:  $F(\chi)$  Linear function if

 $F(\chi) = a \chi + b$ .

## **Even Function:**

 $F(\chi)$  is even if f(-x) = F(x)

Example: 1 - F  $(\chi) = (\chi)^2$  is even since  $f(-\chi) = (-\chi)^2 = (\chi)^2 = f(\chi)$ 

2 - F  $(\chi)$  = cos  $(\chi)$  is even because  $f(-\chi)$  = cos  $(-\chi)$  = cos  $(\chi)$  =  $f(\chi)$ 

23

#### **Odd Function:**

If  $f(-\chi) = -f(\chi)$  the function is called odd.

Example: 1 -  $f(\chi) = \chi^3$  is odd since  $f(-\chi) = -\chi 3 = -f(\chi)$ 

2 - 
$$f(\chi) = Sin(-\chi) = -Sin X = -f(\chi)$$
.

# **Trigonometric Function:**

$$1 - \sin \varphi = \frac{a}{c}$$

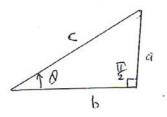
$$2 - \cos \varphi = \frac{b}{c}$$

$$3 - \tan \varphi = \frac{a}{b}$$

$$4 - \cot \varphi = \frac{1}{\tan \varphi} = \frac{b}{a}$$

$$5 - \sec \quad \varphi = \frac{1}{\cos \varphi} = \frac{c}{b}$$

6- CSC 
$$\varphi = \frac{1}{\sin \varphi} = \frac{c}{a}$$



# Relation ships between degrees and radians

$$\varphi$$
 In radius =  $\frac{s}{r}$ 

$$360^{\circ} = \frac{2\pi r}{r}$$

$$= 2\pi radius$$

$$1^{\circ} = \frac{\pi}{180}$$
 radius = 0.0174 radian

1 radian = 
$$\frac{180}{\pi}$$
 deg  $ree = 57.29578^{\circ}$ 

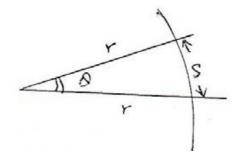
$$\left(\frac{360}{2\pi}\right) = 1 radian = 57^{\circ}.18$$

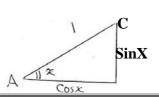
$$180^{\circ} = \pi \text{ radians} = 3.14159 - \text{radians}$$

$$1^{\circ} = \frac{2\pi}{360} = \frac{\pi}{180} \approx 0.001754 \text{ radians}$$

$$\tan \chi = \frac{\sin \chi}{\cos \chi}$$

$$Cot\chi = \frac{Cos\chi}{Sin\chi} = \frac{1}{\tan\chi}$$





$$Sec \ \chi = \frac{1}{\cos \chi}$$

B

$$Csc \ \chi = \frac{1}{\sin \chi}$$

$$Cos^2 \chi + Sin^2 \chi = 1$$

$$\tan^2 \chi + 1 = Sec^2 \chi$$

$$Cot^2 \chi + 1 = Csc^2 X$$

$$Sin(\chi \pm y) = Sin \times Cosy \mu Cos \times Sin y$$

$$Cos(\chi \pm y) = Cos \times Cosy \pm Sin \times Siny$$

$$\tan(\chi \pm y) = \frac{\tan x \pm \tan y}{1 \mu \tan x \tan y}$$

$$1 - SinA + SinB = 2Sin \frac{A+B}{2}Cos \frac{A-B}{2}$$

$$2 - Sin A - Sin B = 2 Cos \frac{A+B}{2} Sin \frac{A-B}{2}$$

$$3 - Cos A + Cos b = 2 Cos \frac{A+B}{2} Cos \frac{A-B}{2}$$

$$4 - Cos A - Cos B = 2 Sin \frac{A+B}{2} Sin \frac{A-B}{2}$$

$$Sin 2 X = 2 Sin X Cos X$$

$$Cos^{2} = Cos^{2}X - Sin^{2}X$$

$$= 1 - 2Sin^{2}X$$

$$= 2Cos^{2}X - 1$$

$$Cos^{2}x = \frac{1 + Cos^{2}x}{2}$$

$$Sin^2 x = \frac{1 - Cos^2 x}{2}$$

$$Sin(\varphi + 2\pi) = Sin\varphi$$

$$Cos(\varphi + 2\pi) = Cos\varphi$$

$$\tan\left(\varphi+\pi\right)=\tan\varphi$$

| Degree          | O <sub>0</sub> | 30°                  | 45°                  | 60°                  | 90°             | 180° | 270°             | 360°   |
|-----------------|----------------|----------------------|----------------------|----------------------|-----------------|------|------------------|--------|
| $\theta$ radius | 0              | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | π    | $\frac{3\pi}{2}$ | $2\pi$ |
| Sin θ           | О              | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\sqrt{\frac{3}{2}}$ | 1               | О    | -1               | О      |
| Cos θ           | 1              | $\sqrt{\frac{3}{2}}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | O               | -1   | O                | 1      |
| $\tan \theta$   | O              | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           |                 |      |                  |        |

$$Cos(\varphi + 2n\pi) = Cos \varphi$$

$$Sin(\varphi + 2n\pi) = Sin \varphi$$

$$Cos(-\varphi) = Cos \varphi$$

$$Sin(-\varphi) = -Sin \varphi$$

$$Cos(\frac{\pi}{2} + \varphi) = Cos \varphi$$

$$tan(\pi - \varphi) = -tan \varphi$$

$$tan(\frac{\pi}{2} + \varphi) = -Cot \varphi$$

# **Graphs:**

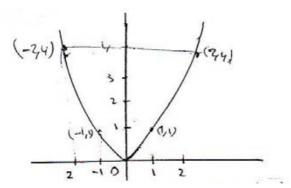
The set of points in the plane whose coordinate pairs are also the ordered pairs of function is called the graph of function.

Example: Graph a function we carry out three steps  $y = \chi^2$ ,  $-2 \le x \le 2$ 

1 - Make a table of pairs from the function as

| χ  | $y = \chi^2$ | $(\chi, y)$ |
|----|--------------|-------------|
| -2 | 4            | (2,4)       |
| -1 | 1            | (-1,1)      |
| 0  | 0            | (0,0)       |
| +1 | 1            | (1,1)       |
| 2  | 4            | (2,4)       |

- 2 Plot enough of the corresponding points to learn the shape of the graph. Add more pairs to the table if necessary.
- 3 Complete the sketch by connecting the points.



Example:  $y = 2 \chi + 3$ 



27

| X              | y = 2X + 3 | ( <b>X</b> , <b>y</b> ) |
|----------------|------------|-------------------------|
| О              | 3          | (0,3)                   |
| $-\frac{3}{2}$ | О          | $(\frac{-3}{2},0)$      |

## **Absolute Value:**

We define the absolute value function  $y = |\chi|$ , the function assign every negative number to non-negative, which corresponding points.

The absolute values of X:

$$|X| = \sqrt{X^2} = \begin{cases} \chi & if X \ge 0 \\ -\chi & if X < 0 \end{cases}$$

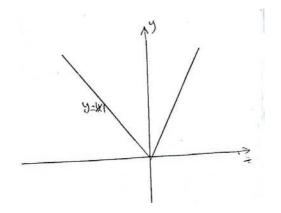
Then:

$$1 - |a.b| = |a|, |b|$$

$$2 - |a+b| \le |a| + |b|$$

$$3 - |a| \le C \Leftrightarrow -C \le a \le C$$

$$y = f(\chi) = \chi$$



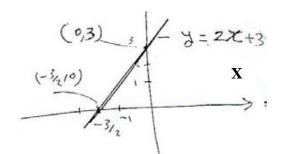
| X  | y | ( <b>X</b> , <b>y</b> ) |
|----|---|-------------------------|
| -1 | 1 | (-1,1)                  |
| 0  | 0 | (0,0)                   |
| 1  | 1 | (1,1)                   |

# Example 2:

$$y = f(\chi) = a\chi + b$$

$$y = f(\chi) = 2\chi + 3$$

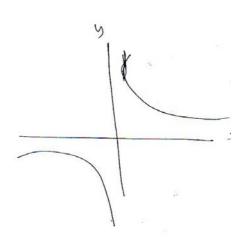
| X              | y | (X,y)              |
|----------------|---|--------------------|
| О              | 3 | (0,3)              |
| $-\frac{3}{2}$ | 0 | $(-\frac{3}{2},0)$ |

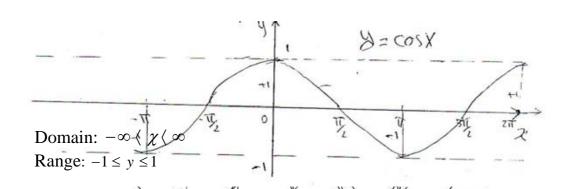


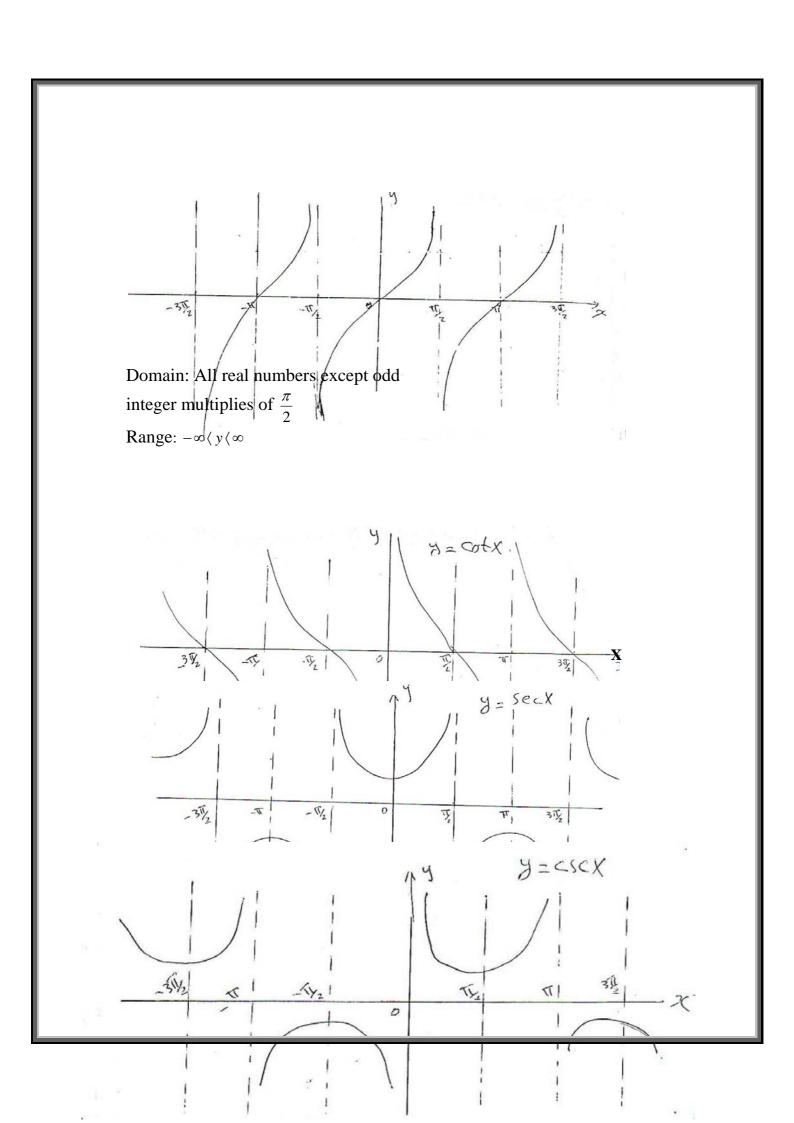
# Example 3:

$$y = f(\chi) = \frac{1}{\chi}$$

| X                     | У                     | (X,y)              |
|-----------------------|-----------------------|--------------------|
| Domain: -∞ ⟨          | $\chi \langle \infty$ | (1,1)              |
| Range: $-1 \le y \le$ | 1 -1                  | (-1,1)             |
| $\frac{1}{2}$         | 2                     | $(\frac{1}{2},2)$  |
| $\frac{1}{3}$         | 3                     | $(\frac{1}{3},3)$  |
| 2                     | $\frac{1}{2}$         | $(2, \frac{1}{2})$ |
| 3                     | $\frac{1}{3}$         | $(3, \frac{1}{3})$ |







### **Limits**:

We say that L is a right hand limit for  $f(\chi)$  when X approaches C for the right, written

$$Lim \ f(\chi) = L$$

$$X \to \overset{\scriptscriptstyle +}{C}$$

Similary, L is the left – hand limit for  $f(\chi)$  when X approaches C for the left, written

$$Lim = f(\chi) = L$$
,

$$X \to \bar{C}$$
.

Then 
$$Lim = f(\chi) = L$$
,

$$X \rightarrow C$$
  $Lim f(X) = Lim f(x)$   
If and only if

$$\chi \to \dot{C} \qquad \chi \to \bar{C}$$

Example:

$$Lim \frac{\chi \pm 1}{\chi - 1} = Lim \frac{(\chi - 1)(\chi + 1)}{(\chi - 1)}$$

$$\chi \to 1$$
  $\chi \to 1$ 

$$Lim \times +1 = 1 + 1 = 2$$

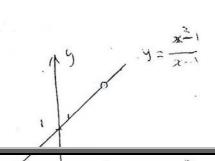
$$\chi \rightarrow 1$$

Theorem 1

If 
$$\lim_{\chi \to c} f(\chi) = L_1, \lim_{\chi \to c} g(\chi) = L_2$$

Then

$$1 - \frac{Lim \left[ f(\chi) \pm g(\chi) \right] = L1 \pm L2}{\chi \rightarrow c}$$



 $2 - \text{Lim} [f(\chi)g(\chi)] = L1 \cdot L2$ 

$$3 - Lim \left[ \frac{f(\chi)}{g(\chi)} \right] = \frac{L1}{L2} if \ L2 \neq 0$$

4 -  $\lim_{\chi \to c} [K f(\chi)] = KL_1$  Where K is a constant

### Theorem 2

1 - Lim K = K, K is constant

$$2 - \frac{Lim[a0 + a1\chi_1 + a2\chi^2 + ..... + an\chi^n]}{\chi \to c} = a_0 + a_1c + a_2c^2 .....anc^n$$

$$3 - \frac{Lim \, smx = 0}{\chi \to 0}$$

$$4 - \frac{Lim \ Cos \ \chi = 1}{\chi \to 0}$$

$$5 - \frac{Lim \frac{Sin \chi}{X}}{\chi \to 0} = 1$$

# Example: Evaluate

$$1 - \frac{Lim(4\chi^2) = 4 Lim \chi^2 = 4(2)^2 = 16}{\chi \to 2} \chi \to 2$$

$$2 - \lim_{x \to 2} (\chi^2 - 9) = 4 - 9 = 5$$

$$3 - Lim \frac{\chi^3 - 8}{\chi^2 - 4} = \frac{(\chi - 2)(\chi^2 + 2\chi + 4)}{(\chi - 2)(\chi + 2)} = \frac{\chi^2 + 2\chi + 4}{\chi + 2}$$
$$= \frac{12}{4} = 3$$

$$4 - Lim \frac{Sin\chi}{\chi} = 3 Lim \frac{Sin3\chi}{3\chi} = 3(1) = 3$$

$$5 - Lim \frac{\tan x}{\chi} = \frac{\frac{Sin \chi}{Cos \chi}}{\chi} = Lim \left[ \frac{Sin \chi}{Cos} \cdot \frac{1}{\chi} \right]$$

$$\chi \to 0 \qquad X \to 0$$

$$= Lim \left[ \frac{Sin \chi}{\chi} \cdot \frac{1}{Cos \chi} \right]$$

$$X \to 0$$

$$= \left[ Lim \frac{Sin \chi}{\chi} \right] \cdot \left[ Lim \frac{1}{Cos \chi} \right] = (1) (1) = 1$$

# **Infinity as Limits**

Evaluate:

$$1 - \lim_{X \to 0} \frac{1}{X} = \infty (2) \lim_{X \to 0} \frac{1}{X} = -\infty$$

$$\chi \to 0$$

$$\chi \to 0$$

$$3 - \lim_{X \to \infty} \frac{1}{X} = 0$$

$$4 - Lim \frac{2\chi^2 - \chi + 3}{3\chi^2 - 5} = Lim \frac{\frac{2\chi^2}{\chi^2}}{\frac{3\chi^2}{\chi^2} - \frac{3}{\chi^2}}$$

Theorem

If  $f(\chi) \le g(\chi) \le h(X)$  and  $Lim f(\chi) = Lim h(X) = L$  then

L is the limit of g(x)

Example: Evaluate

$$1 - \frac{Lim \frac{Sin X}{X}}{X}$$

$$X \to \infty$$

$$2 - \frac{\lim \chi \sin(\frac{1}{X})}{X \to \infty}$$

# **Continuity**

Definition: A function f is said to be continuous at  $\chi = C$  provided the following conditions are satisfied:

1 f(C) is defined

$$2 \frac{Lim f(x)}{\chi \to C}$$
 exists

$$3 \lim_{x \to C} f(x) = f(C)$$

#### Theorem

Any Polynomial

1 
$$P(\chi) = a_0 + a_1 \chi + a_2 X^2 + \dots + an X^4$$
 (an  $\neq 0$ )

Is continuous for all  $\chi$ 

$$2 R(\chi) = \frac{a_0 + a1X + a_2 X^2 + \dots + anX^4}{bo + b_1 X + b_2 X^2 + \dots + bnX^4}$$
  $(an \neq 0, bn \neq 0)$ 

Is continuous at every point of its domain of definition that is at every point where its denominator isd not zero

3 Each of the igonometric function SinX, CosX, tanX, CotX SecX, and CscX, is continuous at every point of its domain of definition.

## Example 1

$$Lim(Cos^2X + Cos X + 1)$$
$$X \to \pi$$

Solution

$$Lim(Cos^2X + CosX + 1) = (Cos^2\pi + Cos\pi + 1)$$
  
=  $(-1)^2 - 1 + 1) = 1$ 

# Example2

$$f(\chi) = \frac{|X|}{X}$$
 Discontinuous at  $\chi = 0$ 

$$Lim \frac{|X|}{X} = 1$$

$$X \rangle 0$$

$$Lim \frac{|X|}{X} \frac{+1}{-1} = -1$$

$$\chi\langle 0$$

$$\lim_{X \to \infty} \frac{|X|}{X}$$
 does not exist

# $f(\chi)$ discontinuous

Example 3: check the continuity of the function  $\chi = 3$ 

$$f(\chi) = \begin{cases} \chi - 2 & \chi \neq 3 \\ 1 & \chi = 3 \end{cases}$$

## SOL

$$f(3) = 1$$

$$Lim(\chi - 2) = 3 - 2 = 1$$

$$\chi \rightarrow 3$$

$$f(3) = Lim f(\chi)$$
$$\chi \rightarrow 3$$

The function continuous at  $\chi = 3$ 

## **Problems**

 $Q1/\!/$  find Domain, range and sketch each of the following:

$$1 - y = \chi^2$$

$$2 - y = \sqrt{X}$$

$$3 - y = 1\chi 1$$

$$4- y = |\chi + 2|$$

$$5 - y = \frac{|\chi|}{\chi}$$

$$6 - y = \frac{1}{\chi}$$

$$7 - y = \frac{\chi + 1}{\chi - 1}$$

$$8 - y = 2 \sin \chi$$

$$9 - y = -2 \sin \chi$$

$$10 - y = 2 + Cos\chi$$

Q2 // Evaluate each of the following limits:

$$1 - \frac{Lim\frac{t+3}{t+2}}{2}$$

$$2 - \frac{Lim \frac{\chi^2 - 1}{\chi - 1}}{\chi}$$

$$3 - \frac{Lim \frac{y2 + 5y + b}{y + 2}}{y \rightarrow 2}$$

$$4 - \frac{Lim \frac{y^2 - 5y + 6}{y - 2}}{y \rightarrow 2}$$

$$5 - \frac{Lim \frac{\chi^2 + 4\chi + 3}{\chi + 3}}{\chi \rightarrow -3}$$

$$6 - \frac{Lim\frac{t+1}{t^2+1}}{t \to \infty}$$

$$7 - \lim_{t \to \infty} \frac{t^2 - 2t}{2t^2 + 5t - 3}$$

$$8 - \frac{\lim \frac{\tan \theta}{\theta}}{\theta}$$

$$9 - \frac{Lim \frac{Sin 2\theta}{\theta}}{\theta \to 0}$$

$$10 - \frac{Lim \frac{Sin \chi}{3 \chi}}{2 \chi}$$

$$\chi \to 0$$

$$11 - \frac{\lim \frac{\sin 5 \chi}{\sin 3 \chi}}{\chi \to 0}$$

$$12 - \lim_{\chi \to \infty} \chi \sin \frac{1}{\chi}$$

$$13 - \frac{Lim \frac{Sin^2 \chi}{\chi}}{\chi \to 0}$$

$$14 - \frac{Lim \frac{Sin^2 \chi}{2\chi^2 + \chi}}{\chi \to 0}$$

$$15 - \frac{Lim \tan 2 \chi Csc 4 \chi}{\chi \to 0}$$

# **Chapter Three**

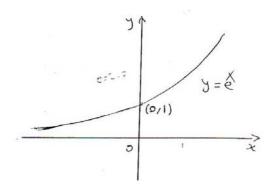
# **Special Function**

1 - Exponential function

(i) 
$$y = e^{x}$$
,  $e = 2.7$ 

Domain: R

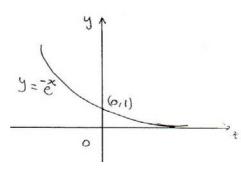
Range:  $R(0,\infty)$ 



(ii) 
$$y = e^{-x}$$

Domain: R

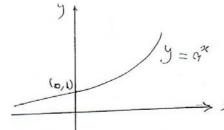
Range: R:  $(0, \infty)$ 



(iii) 
$$y = \overset{x}{a}, a > 0$$

Domain: R

Range:  $(0, \infty)$ 



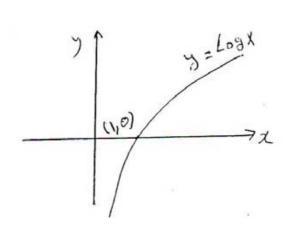
2 – Logarithmic Function:

(i) Common logarithmic function (Log X)

$$y = Log_{10}X \iff \chi = \overset{Y}{10}$$

Domain:  $(0, \infty)$ 

Range: R

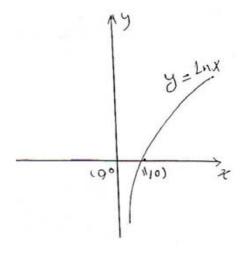


(ii) Natural Logarithmic function (Ln x)

$$y = Ln x \Leftrightarrow X = \stackrel{X}{e}, e = 2.7$$

Domain:  $(0, \infty)$ 

Range: R



#### Theorem:

If a and X are positive numbers and n is any rational number, then

- (i) Ln1 = 0
- (ii) Lne = 1
- (iii) LnaX = Lna + Lnx
- (iv)  $Ln(\frac{X}{a}) = LnX Lna$
- (v)  $Ln X^n = n Ln X$ .

Note:

- $(1) e^{LnX} = X \chi \rangle 0$
- (2)  $Ln^{x}e = \chi$
- (3)  $e^{X} e^{Y} = e^{X+y}$
- $(4) \frac{Lim Ln \chi = \infty}{\chi \to \infty}$
- $(5) \lim_{x \to -\infty}^{x} e = 0$
- $(6) Ln\chi^a = a Ln\chi$

### **Hyperbolic Functions:**

The Hyperbolic Functions are certain combinations of the exponential

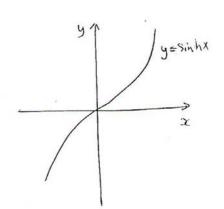
functions  $\stackrel{X}{e}$  and  $\stackrel{-X}{e}$  they are:

(i) Hyperbolic Sine (Sinh):

$$y = SinhX$$
,  $SinhX = \frac{\stackrel{X}{e} - \stackrel{X}{e}}{2}$ 

Domain: R

Range: R

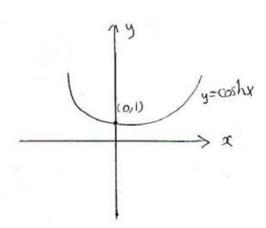


(ii) Hyperbolic Cosin (cosh)

$$y = Coshx$$
,  $CoshX = \frac{\stackrel{X}{e} + \stackrel{X}{e}}{2}$ 

Domain: R

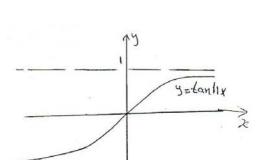
Range:  $(1, \infty)$ 



(iii) Hyperbolic tangent (tanh)

$$y = \tanh x , \tanh x = \frac{\stackrel{X}{e} - \stackrel{X}{e}}{\stackrel{X}{e} - \stackrel{X}{e}}$$

Domain: R



39

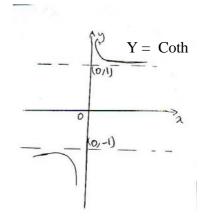
### Range: (-1,1)

(iv) Hyperbolic cotangent (coth)

$$y = \coth \chi$$
,  $\coth \chi = \frac{\stackrel{X}{e} + \stackrel{X}{e}}{\stackrel{X}{e} - \stackrel{X}{e}}$ 

Domain: R - {0}

Range:  $\{y: y \langle -1 \text{ or } y \rangle 1\}$ 

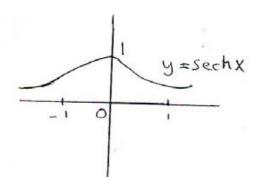


(v) Hyperbolic Secant (Sech)

$$y = Sech\chi$$
 ,  $Sech\chi = \frac{2}{x - x}$ 

Domain: R

Range: (0,1)

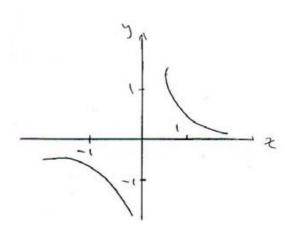


(vi) Hyperbolic cosecant (Csch)

$$y = Csch\chi$$
,  $Csch\chi = \frac{2}{x - x}$   
 $e - e$ 

Domain: R - {0}

Range: R - {0}



#### Relationships among

### **Hyperbolic Function**

$$1 - Cosh^2 \chi - Sinh2 \chi = 1$$

$$2 - Sech^2 \chi + \tanh^2 \chi = 1$$

$$3 - Coth^2 \chi - Csch^2 \chi = 1$$

#### Functions of negative arguments

$$1 - Sinh(-\chi) = -Sinh\chi$$

$$2 - Cosh(-\chi) = Cosh\chi$$

$$3 - \tanh(-\chi) = -\tanh \chi$$

$$4 - Coth(-\chi) = -Coth\chi$$

$$5 - Sech(-\chi) = Sech\chi$$

$$6 - Csch(-\chi) = -Csh\chi$$

#### Addition Formula:

1 - 
$$Sinh(\chi \pm y) = Sinh\chi Coshy \mu Coshy Sinhy$$

2 - 
$$Cosh(\chi \pm y) = Cosh\chi Coshy \pm Sinh\chi Sinhy$$

# Double angle formula:

1 - 
$$Sinh2\chi = 2Sinh\chi Cosh\chi$$

$$Cosh2\chi = Cosh^2\chi + Sinh^2\chi$$

$$2 - = 1 + 2Sinh^2 \chi$$
$$= 2 Cosh^2 \chi - 1$$

# Inverse Trigonometric Function

$$y = Sin^{-1} \chi = arc \ Sine \Leftrightarrow \chi = Siny.$$

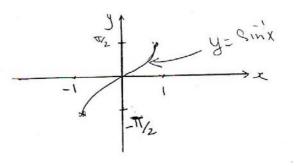
Y is the angle whose Sine is  $\chi$ 

Example:

$$45^{\circ} = Sin^{-1} \frac{1}{\sqrt{2}}, \frac{\pi}{2} = Sin^{-1}1$$

Domain: [-1,1]

Range:  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  Principle values of y.



2 – Inverse Cosine (*Cos* <sup>-1</sup>)

$$y = Cos^{-1} \chi = arc Cos \chi \rightarrow \chi = Cos y$$

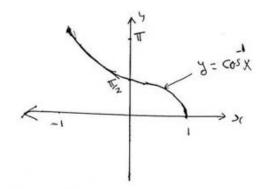
y is the angle whose cosin is  $\chi$ 

Example:

$$30^{\circ} = Cos - 1\sqrt{\frac{3}{2}} \rightarrow \frac{\sqrt{3}}{2} = Cos 30^{\circ}$$

Domain: [-1,1]

Range:  $[0,\pi]$ 



3 – Inverse of tangent (tan <sup>-1</sup>)

$$y = \tan -1 \chi = arc \tan \chi \Leftrightarrow \chi = \tan y$$

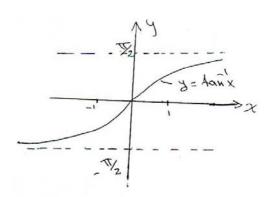
y = is the angle whose cosin is  $\chi$ 

Example:

$$45^{\circ} = \tan^{-1} 1 \Leftrightarrow 1 = \tan 45$$

Domain: R

Range:  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 

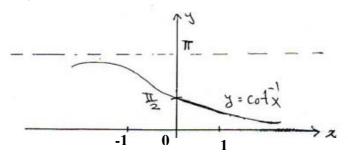


4 – Inverse of cotangent (Cot <sup>-1</sup>)

$$y = Cot - 1\chi = arc Cot \chi \Leftrightarrow \chi = Coty$$

Domain: R

Range:  $(0, \pi)$ 

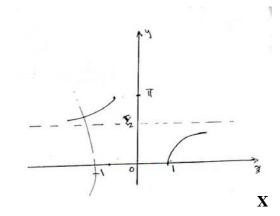


5 – Inverse secant (Sec <sup>-1</sup>)

$$y = Sec - 1 \chi = arc Sec \chi \rightarrow \chi = Sec y$$

Domain:  $(-\infty, -1] Y [1, +\infty)$ 

Range:  $\left[0, \frac{\pi}{2}\right] Y \left(\frac{\pi}{2} \pi\right]$ 

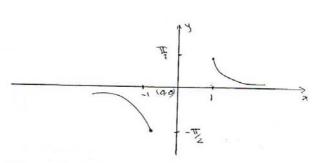


6 – Inverse Csc (Csc -1)

$$y = Csc^{-1} \chi = arc \, Csc \chi \Leftrightarrow X = Csc y$$

Domain:  $(-\infty, -1] Y [1, \infty)$ 

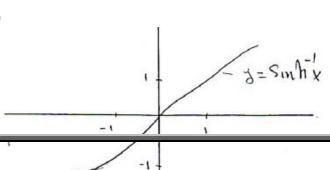
Range:  $\left[-\frac{\pi}{2}, 0\right] Y \left(0, \frac{\pi}{2}\right]$ 



# **Inverse hyperbolic Functions**

1 – Inverse hyperbolic sine (Sinh -1)

$$y = Sinh - 1 \chi \Leftrightarrow \chi = Sinhy$$

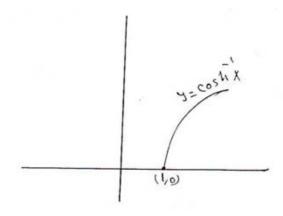


# 2 - Inverse hyperbolic cosin (Cosh <sup>-1</sup>)

$$y = Cosh - 1\chi \iff = Coshy$$

Domain:  $[1, \infty)$ 

Range:  $[0, \infty)$ 

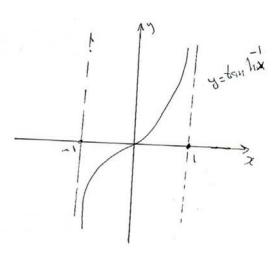


# 3 – Inverse hyperbolic tangent (tanh -1)

$$y = \tanh -1 \chi \Leftrightarrow \chi = \tanh y$$

Domain: (-1, 1)

Range: R

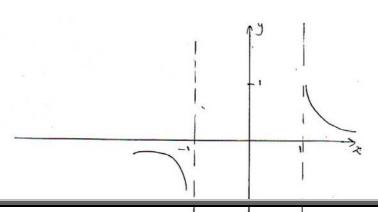


# 4 – Inverse hyperbolic cotangent (Coth <sup>-1</sup>)

$$y = Coth - 1\chi \Leftrightarrow \chi = Cothy$$

Domain:  $\{X \mid 1 \mid X \mid -1\}$ 

Range: R / {0}

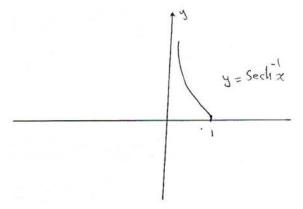


5 – Inverse hyperbolic secant (Sech -1)

$$y = \sec h - 1\chi \Leftrightarrow \chi = \sec hy$$

Domain: (0,1]

Range:  $y \ge 0$ 



6 – Inverse hyperbolic cosecant (Csch -1)

$$y = Csch - 1\chi \Leftrightarrow \chi = Cschy$$

Logarithmic Form of Inverse hyperbolic Functions

Theorem: the following relationships hold for all  $\chi$  in the domain of the stated inverse hyperbolic.

**Functions:** 

1 - 
$$Sinh^{-1} = Ln(\chi + \sqrt{\chi^2 + 1})$$

$$2 - Cosh - 1\chi = Ln \left(\chi + \sqrt{\chi 2 - 1}\right)$$

3 - 
$$\tanh -1\chi = \frac{1}{2} Ln(\frac{1+\chi}{(1-\chi)})$$

$$4 - Coth - 1\chi = \frac{1}{2} Ln \frac{(\chi + 1)}{(\chi - 1)}$$

$$5 - Sech - 1\chi = Ln \left( \frac{1 + \sqrt{1 - \chi^2}}{\chi} \right)$$

$$6 - Csch - 1\chi = Ln \left(\frac{1}{\chi} + \frac{\sqrt{1 + \chi^2}}{|\chi|}\right)$$

Prove that:

\* 
$$Sinh-1\chi = Ln(\chi + \sqrt{\chi^2 + 1})$$

Sol

Let 
$$y = Sinh - 1\chi$$

\* 
$$\chi = Sinhy Since Sinhy = \frac{e - e}{z}$$

$$X = \frac{\stackrel{y}{e} - \stackrel{y}{e}}{\stackrel{7}{e}} \rightarrow 2X = \stackrel{y}{e} - \stackrel{y}{e}$$

$$(e^{y} - z\chi - e^{-y} = 0) e^{y} \rightarrow e^{2y} - 2\chi e^{y} - 1 = 0$$

$$\stackrel{y}{e} = \frac{2\chi \pm \sqrt{4\chi^2 + 4}}{2} = \chi \pm \sqrt{\chi^2 + 1}$$

Since  $\stackrel{y}{e} > 0$  then

$$\stackrel{y}{e} = \chi + \sqrt{\chi^2 + 1} \rightarrow y = Ln(\chi + \sqrt{\chi^2 + 1})$$
 or

$$Sinh - 1\chi = Ln(\chi + \sqrt{\chi 2 + 1})$$

Example:

$$Sinh^{-1} 1 = Ln(1 + \sqrt{1+1})$$
  
=  $Ln(1 + \sqrt{2})$   
= 0.88

\* 
$$\tanh -1\chi = \frac{1}{2} Ln(\frac{1-\chi}{1+\chi})$$

Sol

Let  $y = \tanh -1\chi$ 

$$\therefore \chi = \tanh y = \frac{\stackrel{y}{e} - \stackrel{y}{e}}{\stackrel{-y}{e}} \longrightarrow \left[ \stackrel{2y}{(e+1)} \chi = \stackrel{y}{e} - \stackrel{y}{e} \right] \stackrel{y}{e}$$

$$(e + 1) \chi = e^{2y} - 1 \rightarrow \chi e^{2y} + \chi = e^{2y} - 1$$

$$\chi + 1 = \stackrel{2y}{e} - \chi \stackrel{2y}{e} \rightarrow \stackrel{2y}{e} (1 - \chi) = 1 + \chi$$

$$e^{2y} = \frac{1+\chi}{1-\chi} \to 2y = \frac{1}{2} Ln(\frac{1+\chi}{1-\chi})$$

$$\tanh -1 = \frac{1}{2} Ln(\frac{1+\chi}{1-\chi})$$

Example:

$$\tanh -1(\frac{1}{2}) = \frac{1}{2} Ln(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}) = \frac{1}{2} Ln3 = 0.5493$$
$$= 0.55$$

#### **Problems:**

Q1: find domain, range and sketch each of following:

1 - 
$$y = Sin - 1\chi$$
 ,  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ 

$$2 - y = Cot - 1\chi$$
 ,  $0 \langle y \langle \pi \rangle$ 

$$3 - y = \tan -1\chi$$
,  $-\frac{\pi}{2} \langle y \langle \frac{\pi}{2} \rangle$ 

$$4 - y = \csc -1\chi \quad , \quad -\frac{\pi}{2} \langle y \langle \frac{\pi}{2} \rangle$$

$$5 - y = Cot - 1\chi$$
 ,  $\partial \langle y \langle \pi \rangle$ 

6 - 
$$y = y = Sec - 1\chi$$
,  $\partial \le y \le \pi$ 

$$7 - y = 3Ln\chi$$

$$8 - y = -3Ln\chi$$

9 - 
$$y = 2e^{3x}$$

10 - 
$$y = 2e^{-3X}$$

11 - 
$$y = Sinh^{-1}\chi$$

$$12 - y = Cosh - 1\chi$$

13 - 
$$y = Cosh - 1\chi$$

$$14 - y = \tanh^{-1} \chi$$

15 - 
$$y = Coth^{-1}\chi$$

$$16 - y = Coth^{-1}\chi$$

17 - 
$$y = Sech^{-1}\chi$$

18 - 
$$y = \csc h^{-1} \chi$$

## Q2: Prove that:

$$1 - Sinh - 1\chi = Ln(\chi + \sqrt{\chi^2 + 1}) , -\infty \langle \chi \langle \infty \rangle$$

$$2 - Coch - 1\chi = Ln(\chi + \sqrt{\chi^2 - 1}) \quad , \quad \chi \ge 1$$

$$3 - \tanh -1\chi = \frac{1}{2} Ln(\frac{1+\chi}{1-\chi}) , \quad |\chi| \langle 1$$

$$4 - Coth - 1\chi = \frac{1}{2} Ln(\frac{\chi + 1}{\chi - 1}) , |\chi| \rangle 1$$

$$5 - Sech - 1\chi = Ln(\frac{1 + \sqrt{1 - \chi^2}}{\chi}) , 0 \langle \chi \leq 1$$

6 - 
$$Csch^{-1}\chi = Ln(\frac{1}{\chi} + \frac{\sqrt{1 + \chi^2}}{|\chi|})$$
 ,  $\chi \neq 0$ 

Q3// Discuss the Continuity of the following functions at the given points:

$$1 - f(\chi) = |\chi + 4| \quad at \quad \chi = -4$$

$$f(\chi) = \begin{cases} \sqrt{1 - \chi^2} & \text{if } 0 \le \chi < 1 \\ 2 - 1 & \text{if } 1 \le \chi < 2 \\ 2 & \text{if } \chi = 2 \\ at & \chi = 0 \end{cases}$$

$$3 - f(\chi) = \frac{|\chi|}{\chi} at \ \chi = 0$$

$$f(\chi) = \begin{cases} \frac{1 - Cos\chi}{Sin2\chi} & \text{for } \chi \neq 0 \end{cases}$$

$$4 - \frac{1}{2} \qquad for \ \chi = 0$$

$$at \ \chi = 0$$

$$5 - f(\chi) = \begin{cases} \chi - 2 & \text{for } \chi \neq 3 \\ 1 & \text{for } \chi = 3 \\ at & \chi = 3 \end{cases}$$

$$6 - f(\chi) = \begin{cases} \frac{\chi^3 - 8}{\chi^2 - 4} & \text{for } \chi \neq 2\\ 0 & \text{for } \chi = 2\\ & \text{at } \chi = 2 \end{cases}$$

$$7 - f(\chi) = \begin{cases} \sin \pi \chi & 0 \langle \chi \langle 1 \\ Lnx & 1 \langle \chi \langle 2 \\ at \chi = 1 \end{cases}$$

$$8 - f(\chi) = \frac{\chi - |\chi|}{\chi} at \ \chi = 2$$

$$f(\chi) = \begin{cases} \frac{|\chi - 3|}{\chi - 3} & \text{for } \chi \neq 3 \end{cases}$$

9 - 0 for 
$$\chi = 3$$
 at  $\chi = 3$ 

Q4 // Simplify each of the following:

$$2 - Ln(e)^{X}$$

$$-Ln(X2)$$

4 - 
$$Ln(e^{-X^2})$$

$$5 - Ln(e)^{\frac{1}{X}}$$

$$6-Ln\left(\frac{1}{X}\right)$$

$$7 - \frac{Ln(\frac{1}{X})}{e}$$

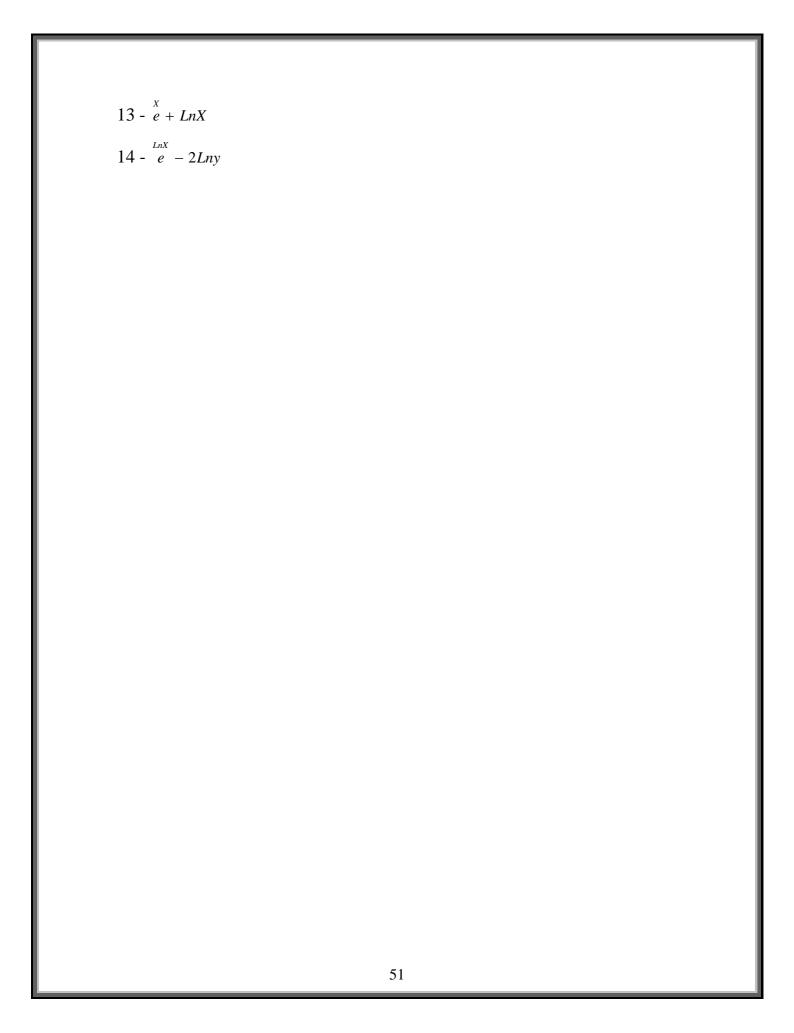
$$7 - e^{i}$$

$$8 - \frac{-Ln(\frac{1}{X})}{e}$$

$$9 - e^{Ln2 + LnX}$$

11 - 
$$Ln(e^{X-X^2})$$

12 - 
$$Ln(\chi^2, e^{-2X})$$



# **Chapter Four**

#### The derivative

1 – Derivative of a function:

Let = y = f(X) and let P(X1, y1) be fixed point on the curve, and Q  $(X1 + \Delta X, y1 + \Delta y)$  is another point on the curve as see in the figure

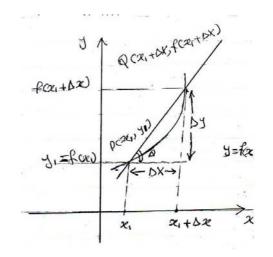
$$y1 = f(X1)$$
, and

$$y1 + \Delta y = f(X1 + \Delta X)$$

$$\Delta y = f(X1 + \Delta X) - y1$$

Divided by  $\Delta X$ 

$$\frac{\Delta y}{\Delta X} = \frac{f(X_1 + \Delta X) - f(X_1)}{\Delta X}$$



The

slope of the curve f(X) is

$$M = \tan \phi = \frac{\Delta y}{\Delta X}$$

$$\therefore M = \frac{f(X + \Delta X) - f(X)}{\Delta X}$$

We define the limit may exist for some value of  $X_1$ .

At each point  $\chi_1$  where limit does exist, then f is said to have a derivative or to be differentiable.

#### **Rules of Derivations:**

$$y = f(X) = C$$

$$y^1 = f^1(X) = \frac{dy}{dX} = 0$$

$$-f(X) = X^n$$

$$f^{1}(X) = nX^{n-1}$$

$$-f(X) = CnX^{n-1}$$

$$-f(X) = U \pm V$$

$$f^{1}(X) = \frac{dy}{dX} = \frac{du}{dx} + \frac{dv}{dX}$$

$$-f(X) = UV$$

$$f^{1}(X) = U\frac{dv}{dX} + V\frac{du}{dX}$$

$$-f(X) = \frac{u}{v}$$

$$f^{1}(X) = \frac{vu^{1} - uv^{1}}{V^{2}}$$
 , Where  $U^{1} = \frac{du}{dX}$ 

$$-f(X) = [U]^n$$

$$f^{1}(X) = n[U]^{n-1} \frac{du}{dX}$$

$$-f(X) = \stackrel{\iota}{e}$$

$$f^{1}(X) = e^{u} \frac{du}{dX}$$

$$-f(X) = \overset{U}{C} \ U \ C \ Cons \tan t$$

$$f^{1}(X) = \overset{U}{C}.LnC.\frac{du}{dx}$$

C constant

n Positive integer

#### Derivative of trigonometric functions:

- 1)  $(\sin u) = \cos u \, du$
- 2)  $(\cos u)' = -\sin u \, du$
- 3)  $(\tan u)' = \sec^2 u \, du$
- 4)  $(\cot u)' = -\csc^2 u du$
- 5)  $(\sec u)' = \sec u \tan u du$
- 6)  $(\csc u)' = -\csc u \cot u du$

#### Derivative of hyperbolic functions:

- 1)  $\sinh u = \cosh u \, du$
- 2)  $\cosh u = \sinh u \, du$
- 3)  $\tanh u = \operatorname{sech}^2 u \, du$
- 4)  $\cot u = \operatorname{csch}^2 u \, du$
- 5)  $\operatorname{sech} u = \operatorname{sech} u \tanh u du$
- 6)  $\operatorname{csch} u = -\operatorname{csch} u \operatorname{coth} u \operatorname{du}$

# derivative of the inverse trigonometric functions:

- 1)  $(\sin^{-1}u)' = du/(1-u^2)^{1/2}$
- 2)  $(\cos^{-1}u)' = -du/(1-u^2)^{1/2}$
- 3)  $(\tan^{-1}u)' = du/1 + u^2$
- 4)  $(\cot^{-1}u)' = du/1 + u^2$
- 5)  $(\sec^{-1}u)' = du/u(u^2-1)^{1/2}$
- 6)  $(\csc^{-1}u)' = du/u(u^2-1)^{1/2}$

# derivative of the inverse of hyperbolic functions:

- 1)  $(\sinh^{-1}u)' = du/(1+u^2)^{1/2}$
- 2)  $(\cosh^{-1}u)' = du/(u^2-1)^{1/2}$
- 3)  $(\coth^{-1}u)' = du/1-u^2 \text{ if } |u|>1$
- 4)  $(\tanh^{-1}u) = du/1 u^2$  if |u| < 1

5) 
$$(\operatorname{sech}^{-1} u)' = - \operatorname{du}/u(1-u^2)^{1/2}$$

6) 
$$(\operatorname{csch}^{-1} u)' = - \operatorname{du}/u(1+u^2)^{1/2}$$

ex: find y of

(1) 
$$y = [\ln (3x+1)]^3$$
 (2)  $y = 4^x$ 

Sol:

$$(1) y' = 3[\ln (3x+1)]^2 [3/(3x+1)] = 9[\ln (3x+1)]^2/(3x+1)$$

(2) 
$$y' = 4^x \ln 4$$

#### {Applications of derivative}

Velocity and acceleration

Ex: find velocity and acceleration at time t to a moving body as

$$S = 2t^3 - 5t^2 + 4t - 3.$$

Sol:

$$V = ds/dt = 6t^2 - 10t + 4$$

$$A = dv/dt = 12t-10$$

#### Theorem:

Prove that:

$$D(\sin^{-1}u) = 1/(1-u^2)^{1/2} (du/dx)$$

Proof

Let 
$$y = \sin^{-1} \rightarrow \sin y = u$$
  $u = [-1,1] \rightarrow y = [-\Pi/2, \Pi/2]$ 

 $Cos y dy/dx = du/dx \rightarrow dy/dx = 1/cos y du/dx$ 

Since  $\cos^2 y + \sin^2 y = 1$  this implies that

Cos y = 
$$(1 - \sin^2 y)^{1/2}$$
  $\rightarrow$  Cos y =  $\pm (1 - u^2)^{1/2}$ 

Cos y is positive between  $-\Pi/2$  and  $\Pi/2$ 

$$Dy/dx = 1/(1-u^2)^{1/2} (du/dx) = D(\sin^{-1}u)$$

Ex: find dy/dx for the following functions:

(1) 
$$y = \tan(3x^2)$$

(2) 
$$y = x \sin^{-1} x + (1 - x^2)^{1/2}$$

$$(3) y = \cosh^{-1}(\sec x)$$

sol:

(1) 
$$y' = \sec^2(3x^2) 6x = 6x \sec^2(3x^2)$$

(2) 
$$y' = x/(1-x^2)^{1/2} + \sin^{-1} x - x/(1-x^2)^{1/2} = \sin^{-1} x$$

(3) 
$$y' = [1/(\sec^2 x - 1)^{1/2}] \sec x \tan x = \sec x \tan x/(\sec^2 x - 1)^{1/2}$$

#### **Implicit relations:**

Ex: find dy/dx if

$$x^5 + 4x y^3 - 3y^5 = 2$$

sol:

$$5x^4 + 4x \ 3y^2(dy/dx) + 4y^3 - 15y^4(dy/dx) = 0$$

$$(12x y^2 - 15y^4) dy/dx = -5x^4 - 4y^3$$

$$dy/dx = (-5x^4 - 4y^3)/(12x y^2 - 15y^4)$$

## **Chain Rule**

$$\overline{1-\text{If }y=f(x)}$$
, and  $x=x$  (t), then

$$\frac{\partial y}{\partial t} = \frac{\partial y}{\partial x} \quad \frac{\partial x}{\partial t}$$

2- If 
$$y = f(t)$$
, and  $x = x(t)$ , then

$$\frac{\partial y}{\partial x} = \frac{\frac{\partial y}{\partial t}}{\frac{\partial x}{\partial t}}$$

Ex: find 
$$\frac{dy}{dt}$$
,  $\frac{dx}{dt}$  and  $\frac{dy}{dx}$  of  $x = 3t + 1$  and  $y = t^2$ 

Sol:

$$\frac{dx}{dt} = 3. \frac{dy}{dt} = 2t, \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t}{3}$$

## LHopital's Rule

Let f and g be two functions which are differentiable in an open interval I containing the point c and let  $g'(x) \neq 0$ . if

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0}, \ \frac{\infty}{\infty}, \ 0.\infty, \ \infty.\infty, \ \infty.\infty, \ \frac{\infty}{0}, \infty^0, \text{ then}$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Ex: evaluate (1) 
$$\lim_{x \to 0} \frac{x^2 - \sin x}{x^2}$$
, (2)  $\lim_{x \to 0} x \ln x$ 

Sol:

(1) 
$$\lim_{x \to 0} \frac{x^2 - \sin x}{x^2} = \frac{0 - 0}{0} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{x^2 - \sin x}{x^2} = \lim_{x \to 0} \frac{2x - \cos x}{2x} = \frac{-1}{0} = \infty$$

$$(2) \lim_{x \to 0} x \ln x = 0.\infty$$

$$\lim_{x \to 0} x \ln x = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \frac{\infty}{\infty}$$

$$\lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x \to 0} x = 0$$

## **Series**

(Power series): If  $\{a_n\}$  is a sequence of constants, the expression:

$$a_0 + a_1 + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$$

is called power series in x.

(Taylor's series): If a function f can be represented by a power series in (x-b) called Taylor's series and has the form:

$$f(x) = f(b) + f'(b)(x-b) + \frac{f''(b)(x-b)^2}{2!} + \dots + \frac{f''(b)(x-b)^n}{n!} + \dots$$

#### Example:

Find Taylor series expansion of  $\cos x$  about a point  $a=2\pi$ 

Sol:

$$f(x) = \cos x$$

$$f(2\pi) = \cos (2\pi) = 1$$

$$f'(x) = -\sin x, \ f'(2\pi) = -\sin 2\pi = 0$$

$$f''(x) = -\cos x, \ f''(2\pi) = -\cos 2\pi = -1$$

$$f'''(x) = \sin x, \ f'''(2\pi) = \sin 2\pi = 0$$

$$f^{iv}(x) = \cos x, \ f^{iv}(2\pi) = \cos 2\pi = 1$$

$$\cos x = 1 - \frac{(x - 2\pi)^2}{2!} + \frac{(x - 2\pi)^4}{4!} - \frac{(x - 2\pi)^6}{6!} + \dots$$

(Maclaurin series): when b = 0, Taylor series called Maclaurin series.

#### Example:

Find Maclaurin series for the function  $f(x) = e^x$ 

Sol:

$$f(x) = e^{x} \to f(0) = e^{0} = 1$$

$$f'(x) = e^{x} \to f'(0) = e^{0} = 1$$

$$f''(x) = e^{x} \to f''(0) = e^{0} = 1$$

$$f'''(x) = e^{x} \to f'''(0) = e^{0} = 1$$

$$e^{x} = 1 + x + (x^{2}/2!) + (x^{3}/3!) + \dots$$

## **Chapter five**

#### (INTEGRALS)

The process of finding the function whose derivative is given is called integration, it's the inverse of differentiation.

#### <u>Definition:</u>(indefinite integral)

A function y=F(x) is called a solution of dy/dx=f(x) if dF(x)/dx=f(x).

We say that F(x) is an integral of f(x) with respect to x and F(x) + c is also an integral of f(x) with a constant c s.t

$$D(F(x) +c)=f(x)$$
.

#### Formulas of Integration:

- 1)  $\int dx = x + c$ .
- 2)  $\int a dx = a \int dx$
- 3)  $\int (du \pm dv) = \int du \pm \int dv$ .
- 4)  $\int x^n dx = (x^{n+1}/n+1) + c$
- 5)  $\int (u)^n du = (u^{n+1}/n+1) + c$
- 6)  $\int e^u du = e^u + c$
- 7)  $\int a^{u} du = (a^{u}/\ln a) + c$
- 8)  $\int du/u = \ln u + c$ .

## Example1:

Solve the differential equation:  $dy/dx=3x^2$ .

Sol:

$$dy=3x^2 dx$$

since  $d(x^3)=3x^2 dx$ , then we have:

$$\int dy = \int 3x^2 dx = \int d(x^3) dx$$

$$y=x^3+c$$
.

# 9 methods for finding integrals:

## 1"Integral of trigonometric functions":

- 1)  $\int \cos u \, du = \sin u + c$
- 2)  $\int \sin u \, du = -\cos u + c$
- 3)  $\int \sec^2 u \, du = \tan u + c$
- 4)  $\int \csc^2 u \, du = -\cot u + c$
- 5)  $\int \sec u \tan u du = \sec u + c$
- 6)  $\int \csc u \cot u du = -\csc u + c$

## 2"Integral of hyperbolic functions":

- 1)  $\cosh u \, du = \sinh u + c$
- 2)  $\int \sinh u \, du = \cosh u + c$
- 3)  $\int \operatorname{sech}^2 u \, du = \tanh u + c$
- 4)  $\int \operatorname{csch}^2 u \, du = -\cot u + c$
- 5)  $\int$  sech u tanh u du = sech u + c
- 6)  $\int \operatorname{csch} u \operatorname{coth} u du = -\operatorname{csch} u + c$

# <u>Integral of the inverse trigonometric functions:</u>

1) 
$$\int du/(1-u^2)^{1/2} = \{\sin^{-1}u + c \text{ or } -\cos^{-1}u + c \}$$

2) 
$$\int du/1+u^2 = \{tan^{-1}u + c \quad or \quad -cot^{-1}u + c\}$$

3) 
$$\int du/u(u^2-1)^{1/2} = \sec^{-1}u + c \text{ or } -\csc^{-1}u + c$$

## <u>Integral of the inverse of hyperbolic functions:</u>

1) 
$$\int du/(1+u^2)^{1/2} = \sinh^{-1}u + c$$

2) 
$$\int du/(u^2-1)^{1/2} = \cosh^{-1}u + c$$

3) 
$$\int du/1-u^2 = \tanh^{-1}u + c$$
 if  $|u| < 1$  and  $\int du/1-u^2 = \coth^{-1} + c$  if  $|u| > 1$ 

4) 
$$\int du/u(1-u^2)^{1/2} = - \operatorname{sech}^{-1}u + c$$

5) 
$$\int du/u(1+u^2)^{1/2} = -\operatorname{csch}^{-1}u + c$$

ex:

evaluate:

1) 
$$\int (5x^4-6x^2+2/x^2)dx$$

- 2)  $\int \cos 2x \, dx$
- 3)  $\int \cos^2 x \, dx$

sol:

1) 
$$\int (5x^4-6x^2+2/x^2)dx = 5 \int x^4dx-6 \int x^2dx+2 \int x^{-2}dx$$
  
 $X^5 -2x^3-2/x+c$ 

- 2)  $\int \cos 2x \, dx = \sin 2x/2 + c$
- 3)  $\int \cos^2 x \, dx = 1/2 \int (1 + \cos 2x) \, dx = 1/2 [\int dx + \int \cos 2x \, dx]$  $1/2[x + \sin 2x/2] + c = 1/2x + 1/4 \sin 2x + c$

### 3- "Integration by parts"

Let u and v be functions of x and d(uv) = u dv + v du

By integration both sides of this equation (w.r.t x)

$$\int d(uv) = \int u \, dv + \int v \, du \text{ this implies (uv)} = \int u \, dv + \int v \, du$$

$$\int u \, dv = (uv) - \int v \, du$$

 $\underline{ex}$ : find  $\int x e^x dx$ 

sol:

let  $u=x \rightarrow du = dx$  and let  $dv = e^x dx$ from  $\int u dv = (uv) - \int v du \rightarrow \int x e^x dx = x e^x - e^x + c$ 

4- "Integrals involving  $(a^2 - u^2)^{1/2}$ ,  $(a^2 + u^2)^{1/2}$ ,  $(u^2 - a^2)^{1/2}$ ,  $a^2 - u^2$ ,  $a^2 + u^2$ ,  $a^2 - u$ 

- (A)  $u = a \sin \Phi$  replaces  $a^2 u^2 = a^2 a^2 \sin^2 \Phi = a^2 (1 \sin^2 \Phi) = a^2 \cos^2 \Phi$
- (B)  $u = a \tan \Phi \text{ replaces } a^2 + u^2 = a^2 + a^2 \tan^2 \Phi = a^2 \sec^2 \Phi$
- (C)  $u= a \sec \Phi \text{ replaces } u^2 a^2 = a^2 \sec^2 \Phi a^2 = a^2 \tan^2 \Phi$

Ex: find 
$$\int dx/x^2(4 - x^2)^{1/2}$$

Sol:

Let 
$$x=2\sin \Phi \rightarrow dx = 2\cos \Phi d\Phi$$

$$\int dx/x^2 (4 - x^2)^{1/2} = \int 2\cos\Phi \ d\Phi/4 \sin^2\Phi (4 - 4\sin^2\Phi)^{1/2} =$$

$$\int 2\cos\Phi \ d\Phi/4 \sin^2\Phi(2\cos\Phi) = \int d\Phi/4 \sin^2\Phi = 1/4\int \csc^2\Phi \ d\Phi = -1/4\cot\Phi + c$$

now

from x= 2sin 
$$\Phi \to \sin \Phi = x/2 \to \cos \Phi = (1 - x^2/4)^{1/2} = 1/2(4 - x^2)^{1/2}$$
  
-1/4cot  $\Phi$  + c = (-1/4)(4 -  $x^2$ )<sup>1/2</sup>/x

# 5-" Integrals involving $ax^2 + bx + c$ "

First, We put the equation as  $(ax^2 + bx) + c$ .

Second, if  $a \ne 1$ , we take a as a mutable by the sides of the equation which has x,  $a[x^2 + (b/a)x] + c$ .

Third, put and sub to the equation [(1/2) the number multiplied by  $x]^2$ ,  $a[x^2 + (b/a)x + (1/4)(b/a)^2 - (1/4)(b/a)^2] + c$ .

Fourth, rewrite the equation as  $a[x^2 + (b/a)x + (1/4)(b/a)^2] + c - (1/4)(b^2/a)$ 

Last, the equation become  $a[x+(1/2) (b/a)]^2 + c - (1/4)(b^2/a)$  and suppose u = x+(1/2) (b/a) to become  $a[u]^2 + c - (1/4)(b^2/a)$ 

Ex: Find 
$$\int dx/(4x^2 + 4x + 2)$$

Sol:

$$4x^{2} + 4x + 2 = (4x^{2} + 4x) + 2 = 4(x^{2} + x) + 2 =$$

$$4[x^{2} + x + (1/4) - (1/4)] + 2 = 4[x^{2} + x + (1/4)] + 2 - 1 =$$

$$4[x + 1/2]^{2} + 1.$$

Let 
$$u = x+1/2 \rightarrow 4[x+1/2]^2 + 1 = 4u^2 + 1$$
.

Since 
$$u = x+1/2 \rightarrow x = u - (1/2) \rightarrow dx = du$$

$$\int dx/(4x^2 + 4x + 2) = \int du/(4u^2 + 1) = 1/2 \int 2du/(4u^2 + 1) = 1/2 \tan^{-1} 2u = 1/2 \tan^{-1} 2(x+1/2).$$

#### 6-"method of partial fractions"

If the integral of the form f(x)/g(x) s.t f(x) and g(x) are poly.

And degree of f(x)< degree of g(x) we can carry out two cases:

Case i

If all factor of g(x) are linear, by the following ex:

Ex: find 
$$\int dx/x^2 + x - 2$$

Sol:

$$1/x^2 + x - 2 = 1/(x-1)(x+2) = A/(x-1) + B/(x+2) =$$

$$[A(x+2) + B/(x-1)]/(x-1)(x+2)$$

$$1 = Ax + A2 + Bx - B = (A+B)x + (A2-B)$$

$$1 = A2 - B$$

0 = (A + B)

$$3A=1 \rightarrow A=1/3$$
 put in eq.(2)  $\rightarrow$  B =-1/3

$$\int dx/x^2 + x - 2 = \int 1/(x-1)(x+2)dx = \int [A/(x-1) + B/(x+2)]dx$$

$$= \int \left[ (1/3)/(x-1) - (1/3)/(x+2) \right] dx = 1/3 \int /(x-1) - 1/3 \int /(x+2) dx$$

$$= 1/3 \ln|x-1| - 1/3 \ln|x+2| + c$$

Case ii

If some of the factors of g(x) are quadratic, by the following ex:

Ex: find 
$$\int (x^2 + x - 2)dx/(3x^3 - x^2 + 3x - 1)$$

Sol:

$$(x^{2} + x - 2) / (3x^{3} - x^{2} + 3x - 1) = (x^{2} + x - 2) / x^{2}(3x - 1) + (3x - 1)$$

$$= (x^{2} + x - 2) / (3x - 1) (x^{2} + 1) = [A/(3x - 1)] + [(Bx + C)/(x^{2} + 1)]$$

$$= [A(x^{2} + 1) + (Bx + C) (3x - 1)] / (3x - 1) (x^{2} + 1)$$

$$x^{2} + x - 2 = A(x^{2} + 1) + (Bx + C) (3x - 1)$$

$$x^{2} + x - 2 = (A + 3B) x^{2} + (B + 3C) x + (A - C)$$

$$A + 3B = 1$$

B + 3C = 1  
A - C = -2  
A = -7/5, B= 4/5, C = 3/5  

$$(x^2 + x - 2)/(3x - 1) (x^2 + 1) = (-7/5)/(3x - 1) + [(4/5)x + (3/5)]/(x^2 + 1)$$
  
And  

$$\int (x^2 + x - 2)dx/(3x - 1) (x^2 + 1) = (-7/5) \int dx/(3x - 1) + (4/5) \int x dx/(x^2 + 1) + (3/5) \int dx/(x^2 + 1)$$

# 7-"further substitutions"

 $=-(7/15) \ln |3x-1| + (2/5) \ln |x^2+1| + 3/5 \tan^{-1} x$ 

Some integrals involving fractional powers of the variable x may be simplified by substitution  $x = u^n$  where n is the least common multiple of the denominators of the exponents.

#### Ex:

$$I = \int (x)^{1/2} dx/1 + (x)^{1/3}$$

sol:

$$let x=u^6 \rightarrow dx = 6 u^5 du$$

$$I = \int (u^6)^{1/2} (6 u^5) du / (1 + (u^6)^{1/3}) = 6 \int u^3 u^5 du / 1 + u^2 = 6 \int u^8 du / 1 + u^2$$

By long division

$$u^{8}/1+u^{2} = u^{6} - u^{4} + u^{2} - 1 + (1/1 + u^{2})$$

$$I = 6 \int u^{8} du/1 + u^{2} = 6 \int [u^{6} - u^{4} + u^{2} - 1 + (1/1 + u^{2})] du$$

$$= (6/7) u^{7} - (6/5) u^{5} + 2 u^{3} - 6u + 6 tan^{-1}u + c$$

$$= (6/7) x^{7/6} - (6/5) x^{5/6} + 2 x^{1/2} - 6x^{1/6} + 6 tan^{-1}(x^{1/6}) + c$$

#### 8-"rational functions of sin x and cos x"

If the integral that is rational function of sin x or cos x or both, can be changed as following:

Let 
$$z = \tan(x/2)$$
  
 $x/2 = \tan^{-1}z \rightarrow x = 2\tan^{-1}z \rightarrow dx = 2dz/(1+z^2)$   
 $\cos(x/2) = 1/(1+z^2)^{1/2}, \sin(x/2) = z/(1+z^2)^{1/2}$ 

$$\sin x = 2 \sin(x/2) \cos(x/2) = 2z/(1+z^2)$$
  
 $\cos x = \cos^2(x/2) - \sin^2(x/2) = (1-z^2)/(1+z^2)$  from  $[\cos(x/2+x/2)]$ 

ex: find 
$$I = \int dx/(1 - \sin x + \cos x)$$

sol:

$$I = \int \frac{2dz/(1+z^2)}{(1-[2z/(1+z^2)] + [(1-z^2)/(1+z^2)])}$$

$$= \int \frac{2dz/(1+z^2)}{(1+z^2-2z+1-z^2)/(1+z^2)}$$

$$= \int 2dz/(2-2z) = \int dz/(1-z) = -\ln|1-z| + c = -\ln|1-\tan(x/2)| + c$$

#### 9-"evaluating integrals of the following types"

- (A)  $\sin(mx) \sin(nx) = (1/2) [\cos(m-n)x \cos(m+n)x]$
- (B)  $\sin(mx) \cos(nx) = (1/2) \left[ \sin(m-n)x + \sin(m+n)x \right]$
- (C)  $\cos(mx) \cos(nx) = (1/2) [\cos(m-n)x + \cos(m+n)x]$

Ex:

$$\int 2\sin(4x) \sin(3x) dx = \int (2/2) [\cos(4-3)x - \cos(4+3)x] dx$$
$$= \int (\cos x - \cos 7x) dx = \sin x - (1/7)\sin 7x + c$$

{definite integral}

The definite integral like indefinite integral but there is a limit to the integral like  $\int_a^b f(x) dx = F(a) - F(b)$ .

Ex: evaluate  $\int_0^3 x^3 dx$ 

Sol:

$$(3)^4/4 - 0 = 81/4$$

Applications of definite integral

{area under the curve}

Ex: find the area under sin x bdd by x=0 and  $x=2\pi$  and x-axis Sol:

A=
$$\int_0^{2\pi} \sin x \, dx = \int_0^{\pi} \sin x \, dx - \int_{\pi}^{2\pi} \sin x \, dx = (\cos \pi - \cos 0) + (\cos \pi - \cos \pi) = (-1 - 1) + (1 - (-1)) = 4$$

{area between two curves}

Ex: find the area bdd by  $y=2-x^2$  and y=-x

Sol:

Y= 2- 
$$x^2$$
 = y = -x  
2-  $x^2$  = -x  $\rightarrow$   $x^2$  -x-2=0  $\rightarrow$  (x-2)(x+1) = 0  $\rightarrow$  x=2, x= -1  
A= $\int_{-1}^{2}[(2-x^2)-(-x)]dx$ =  $[2x-(x^3/3)+(x^2/2)]_{-1}^{2}$ = 6.5

#### **Double integrals**

When the integral have two signals of integral to two parameters x and y called double integral, like  $\iint f(x,y) dx dy$ .

The benefit of like integrals is to find the volume of things.

Ex: find the volume of  $f(x,y) = x^2y$  limited by x=(1,3) and y=(1.2) $\int_{1}^{2} \int_{1}^{3} x^2y \, dx \, dy = \int_{1}^{2} \left[ (x^3/3)y \, dy \right]_{1}^{3} = \int_{1}^{2} \left[ (3^3/3) - (1^3/3) \right] y \, dy$   $= \int_{1}^{2} \left[ (27/3) - (1/3) \right] y \, dy = \int_{1}^{2} (26/3)y \, dy = (26/3) \int_{1}^{2} y \, dy$   $= \left[ (26/3)(y^2/2) \right]_{1}^{2} = \left[ (13/3) y^2 \right]_{1}^{2} = (13/3) 4 - (13/3) = 13$